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About PETRAS
The PETRAS National Centre of Excellence for IoT Systems Cybersecurity exists to 
ensure that technological advances in the Internet of Things (IoT) are developed 
and applied in consumer and business contexts, safely and securely. This is done 
by considering social and technical issues relating to the cybersecurity of IoT 
devices, systems and networks.

To achieve our objectives, PETRAS works in collaboration with academia, industry 
and government partners to ensure our research can be directly applied to benefit 
society, business and the economy.

The Centre is a consortium of 23 research institutions and the world’s largest 
socio-technical research centre focused on the future implementation of the 
Internet of Things. The research institutions  are: UCL, Imperial College London, 
University of Bristol, Cardiff University, Coventry University, University of 
Edinburgh, University of Glasgow, Lancaster University, Newcastle University, 
Northumbria University, University of Nottingham, University of Oxford, University 
of Southampton, University of Surrey, Tate,  the University of Warwick and Keele 
University.

As part of UKRI’s Security of Digital Technologies at the Periphery (SDTaP) 
programme, PETRAS runs open, national level funding calls which enable us to 
undertake cutting edge basic and applied research. We also support the early 
adoption of new technologies through close work with other members of the 
SDTaP programme, such as InnovateUK, supporting demonstrations of new 
technology and commercialisation processes.
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Abbreviations
AI Artificial Intelligence AIDS Anomaly-based Intrusion 

De-tection System
API Application Programming 

Interfacing
ARIMA Autoregressive Integrated 

Moving Average
AUC Area Under Curve BYOD Bring Your Own Device
CGI Common Gateway Interface CIA Confidentiality, Integrity, 

Availability
COPOD Copula-Based Outlier Detec-

tion
CPS Cyber-Physical Systems

CRM Customer Relationship Man-
agement

CV Cross-Validation

DCS Distributed Control System DFT Discrete Fourier Transform
DL Deep Learning DMZ Demilitarised Zone
DNP3 Distributed Network Protocol 

3
DNS Domain Name Service

DoS Denial of Service DPIT Differential Pressure Indica-
tor and Transmitter

DWT-
MLEAD

Discrete Wavelet Transforms 
and Maximum Likelihood 
Estimation

ECG Electrocardiogram

EMS Energy Management System ERP Enterprise Resource Plan-
ning

EUC Equipment Under Control F1 F1 Score
Fast-MCD Fast Minimum Covariance 

Determinant
FDI False Data Injection

FFT Fast Fourier Transform FN False Negative
FP False Positive FPR False Positive Rate
FTP File Transfer Protocol GAN Generative Adversarial 

Network
HBOS Histogram-Based Outlier 

Score
HIDS Host-based Intrusion Detec-

tion System
HIF Hybrid Isolation Forest HMAD Hidden Markov Anomaly 

Detection
HMI Human Machine Interface HTTP Hypertext Transfer Protocol
I/O Input/Output ICMP Internet Control Message 

Protocol
ICS Industrial Control Systems IDS Intrusion Detection System
IoT Internet of Things IP Internet Protocol
IT Information Technology KNN K-Nearest Neighbours
K-S Kolmogorov Smirnov LaserDBN Laser Dynamic Bayesian 

Network
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LIME Local Interpretable Model 
Agnostic Explanations

LIT Level Indicator and Trans-
mitter

LoC Loss of Control LOF Local Outlier Factor
LSTM-AD Long Short-Term Memory 

Anomaly Detection
ML Machine Learning

MultiHMM Multivariate Hidden Markov 
Model

NF Normalizing Flows

NIDS Network-based Intrusion 
Detection System

NoveltySVR Novelty Support Vector 
Regression

OCSVM One-Class Support Vector 
Machine

OS Operating System

OT Operational Technology PCI Prediction Confidence Inter-
val

PCS Process Control System PERA Purdue Enterprise Reference 
Architecture

PLC Programmable Logic Control-
lers

Pr Precision

PR Precision-Recall PST Probabilistic Suffix Trees
Re Recall RNN Recurrent Neural Network
RobustPCA Robust Principal Components 

Analysis
ROC Receiver Operating Charac-

teristic
RTU Remote Terminal Unit SaaS Software-as-a-Service
SCADA Supervisory Control and Data 

Acquisition
SDM Statistical Division Multiplex-

ing
SHAP Shapely Additive Explanations SIS Safety Instrumented System

sk-learn scikit-learn SMB Service Message Block
SNMP Simple Network Management 

Protocol
SOA Service-Oriented Architec-

ture
SOC Security Operations Centre SQL Structured Query Language
SR Spectral Residual STOMP Explainable Artificial Intelli-

gence
SVM Support Vector Machines SWaT Secure Water Treatment
TCP Transmission Control Proto-

col
TDM Time Division Multiplexing

TLS Transport Layer Security TN True Negative
TP True Positive TPR True Positive Rate
TSMC Taiwan Semiconductor Manu-

facturing Company
UDP User Datagram Protocol

USB Universal Serial Bus VALMOD Variable-Length Motif and 
Discord discovery

VAR Vector Autoregression VNC Virtual Network Computing
XAI Explainable Artificial Intelli-

gence
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1. Executive Summary
Industrial Control Systems (ICS) are increasingly becoming the subject of high-pro-
file attacks. The motivations for these attacks can range from disgruntled em-
ployees, financial, socio-political, military advantage, and corporate advantage, 
amongst others. 

Historically, intrusion detection systems (IDS) have not been widely used to pro-
tect ICS. For years, security for ICS was achieved through obscurity and isolation 
due to wide use of legacy systems that were not connected to wider networks 
and use of proprietary communication protocols. However, to improve cost-effi-
ciency and productivity, ICS are becoming more connected to other systems via 
open communication protocols and use of smart devices such as Internet of 
Things (IoT). This new design has made securing ICS more challenging, and in 
need of security tools and techniques to increase visibility and protect against 
evolving threats.

In the coming decade, due to increasing sophistication of attackers and their at-
tack methods, it is critical that security measures also advance and have the abil-
ity to accurately detect and prevent threats. Machine Learning (ML) is one such 
promising technology. ML systems can be trained to automatically learn patterns 
of behaviour directly from network and/or physical data to detect malicious activ-
ity, and optionally, faults, and then deploy them to make inferences about new 
patterns in service. While the use of ML has advantages such as faster creation of 
attack detection models, building and deploying ML systems have significant 
challenges. 

This report aims to prepare ICS end-users to have technical discussions and 
make informed decisions about creating and deploying ML-based IDS into a 
business. There is also guidance on which detection tools to choose from in 
the presence of a plethora of commercial and open-source options. 

This report is meant to serve as a guide for:

• Operators, managers of ICS or those responsible for making decisions related 
to designing, installing, purchasing, or maintaining the performance of IDS. 

• ICS suppliers, component designers, and others working on design/architec-
ture definition processes.

• Decision-makers at the boardroom level when taking high-level decisions 
about the security of their ICS facilities.
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This report provides tools for selecting and deploying Machine Learn-
ing-based anomaly detection tools into a business: 

• The types of ML-based anomaly detection tools available
• Aspects to consider while selecting one/discussing about them
• How to define well-rounded performance
• Options for deploying them and maintaining them when they are in use
• Limitations - both at an algorithm-level and at a domain-level. Also, Cyber-Phys-

ical Systems which encompass autonomous cars, robots, etc., are broader 
than only ICS. They are not targeted by this guidelines report. 

For further details regarding the parent project, refer to Section APX A.

2. Key Recommendations

• Dataset: The most important starting point is to identify the critical assets and 
processes with regards to safety and security. This will allow data capture at 
suitable points around the system to maximise protection. Fortunately, with 
ICS, changes upstream can be felt downstream; therefore, an anomaly detec-
tor with wide enough focus will be also able to capture this context-based 
anomaly. More detailed considerations will need to be made about physical 
measurement units, sampling frequency and data concentration based on ac-
cessibility and fidelity requirements. 

• Model Selection: Semi-supervised and unsupervised detectors with their 
ability to detect zero-day attacks should make them the preferred choice, de-
spite their tuning challenges. Furthermore, if hand-labelling is feasible to some 
extent, semi-supervised learning would be the best option. However, in a nov-
elty detection form, this approach would first require an anomaly-free dataset 
for the model to learn normal behaviour. 

• Interpretability/Usability: For the models to be usable, it is essential that 
the performance metrics utilised account for false positive rates in the imbal-
anced training dataset. If the model(s) is too sensitive, then this could lead to 
the operators getting distracted and/or not taking the model seriously. On the 
other hand, maximising interpretability will allow the operator who has the 
final say to select better decisions regarding corrective actions/ countermeas-
ures. Knowledge of “where”, “when” and “why” the anomaly was detected can 
add to model trustworthiness. Several options were presented including ap-
propriate model choice, data visualisation and separate explainability tools. 

• Maintenance: Post-deployment, to keep up with process changes and to en-
sure that the system remains performant, it is essential that periodic and rig-
orous re-assessment, model updating (and documentation) is carried out. If 
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feasible, online training with fresh data from the field could make the system 
robust to operational drift.

Stage References
Acquire a dataset from operation 3.1, 3.2, & 5.1.1
Verify veracity of data, and conduct pre-processing and 
exploratory data analysis

5.1.1, 5.1.2, & 5.3

Carry out feature engineering & complete data preparation 5.1.3, 5.3
Devise machine learning strategy and identify a suite of 
detection models

5.2, 5.3, & 5.4

Select evaluation metrics 5.2, 5.4, & 5.5.2
Train (& validate) detection models, & tune hyperparameters 5.5.1, 5.5.2
Evaluate and compare models’ performance and suitability 5.4, 5.5.2, & 5.7
Deploy to field for real-time use & consider maintainability 
aspects

5.6, 5.7

Table 1: References for ML-based anomaly detection system development flowchart

Figure 1: Machine-Learning-based anomaly detection system development flowchart
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3. Background
Industrial Control Systems (ICS) Control Systems (ICS) are networked information 
systems that control and monitor physical processes. They are a critical part of a 
wide variety of products and services we rely on every day. From a high-level 
view, the monitor and control functions involve: 

• Monitor: part of a control loop; keeping an eye on a critical value and compar-
ing it against a predefined threshold to automatically compute the error

• Control: through error feedback; moving/activating things, and initiating pro-
cesses 

In tandem, an operator typically watches the current state of the automation sys-
tem in real-time and intervenes when necessary, i.e., they supervise the process. 

Hence, ICS is an umbrella term used for various automation systems and their 
devices, e.g., Programmable Logic Controllers (PLC), Building Management Sys-
tems (BMS), Human Machine Interfaces (HMI), Supervisory Control and Data Ac-
quisition (SCADA), Remote Terminal Units (RTU), etc. 

The rest of this section provides a brief review of the landscape of cyber threats 
associated with ICS before diving into the details of IDS from Section 4 onwards.

3.1 Attacks on ICS

3.1.1 Motivation, Attacker Types, and Attack Vectors

ICS have been the subject of several attacks in recent years. Figure 1 shows some 
of the different sources of cyber threats. Each of these attack groups (or “cyber-
criminal” groups) have different motivations and levels of sophistication/technol-
ogies at their disposal. These motivations could be a financial, socio-political, mil-
itary, corporate advantage, damage to reputation, etc.
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Figure 2: Categories of cyber threat sources based on level of sophistication

Figure 3: Perpetrators of cyberattacks choose from a variety of attack vectors. Adapted 
from [1] 
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Based on the tools at their disposal, their ability to conduct reconnaissance/avail-
able intelligence, and differing motivations, perpetrators of cyberattacks choose 
from a variety of attack vectors. Figure 3 provides details of the commonly ob-
served attack methods based on Kaspersky’s annual ICS threat landscape report 
2022 [1].

Most attacks appear to involve compromising the corporate IT network e.g., 
phishing pages, software vulnerabilities. Once attackers have a foothold in a net-
work, they systematically move “laterally” (Cyber “Kill-Chain”) across the network 
to compromise a particular system or a combination of systems along the way. 
The MITRE ATT&CK framework for ICS shown in Figure 4 is a generalized model of 
the movement strategy. The MITRE Corporation also maintains a globally central-
ized, publicly accessible online database of Common Vulnerabilities and Expo-
sures (CVEs) related to information security whereby known vulnerabilities are 
attributed to official CVE IDs [2], [3]. The database is searchable by vendor name 
and product type, and provides information regarding available patches.   

Examples of these scenarios with different components in the Operational Tech-
nology (OT) side are shown in Table 2 and Figure 5., Attacks are often top-down 
(IT to OT), however, OT sub-network attacks can also lead to penetration of enter-
prise IT systems (Purdue model [4]). 

In recent times, OT security has had to adapt due to the additional attack 
vectors introduced by IT-OT convergence and the Industrial Internet of 
Things. Further details are provided in Section APX D. ii). 
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Figure 4: The MITRE ATT&CK framework for ICS. Adapted from [5].
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Attack Point Example Attack

1 – Sensors
Compromised sensor and false data injection 
(FDI) attack, causing the control logic to act on 
malicious data.

2 – Communications 
Media (S to C)

Man-in-the-middle between sensor and 
controller causes a delay or full obstruction, e.g., 
stale data and denial-of-service (DoS) attacks.

3 - Controlleroller
Compromised controller and incorrect signals 
(false data injection attack) sent to the actuators 
leading to damage of assets.

4 – Communications 
Media (C to A)

Man-in-the-middle between the controller and 
actuator could perform delay, replay or denial-of-
control (DoS of the actuator) attacks.

5 - Actuators
Compromised actuator and execution of control 
actions different to the instructions of the 
controller, e.g., zero dynamics attacks.

6 – Physical Processes
Encompasses physical attacks damaging the 
system. Carried out in isolation or in combination 
with a cyber-attack (as a hybrid).

7 – Communications 
Media (Sup to C)

Man-in-the-middle between the supervisory 
control layer or configuration devices and the 
controllers. E.g., delay, DoS, etc.

8 – Supervisory 
Controls

Compromised supervisory controls (SCADA 
system) or configuration devices. E.g., the 
Ukraine power grid attack led to a service 
disruption for customers for several hours and 
loss of data.

Table 2: Example “Active” attack scenarios at different points (Impact/Exploitation stage). 
Adapted from [6].
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Figure 5: Attack points in a Cyber-Physical or Industrial Control System [6].
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Year ICS Attack vector/method Consequences
2003 Davis–Besse 

nuclear 
power plant, 
Ohio, US

(Microsoft SQL) Slammer 
worm injected through 
direct (T1) remote 
connection – able to 
bypass firewall and access 
control

Safety Parameter Display 
System and plant process 
computer being inaccessible 
for around 6 hours each 

2005 Daimler-
Chrysler 
automobile 
plants, US

Zotob worm exploited 
vulnerabilities in Windows 
2000 industrial PCs

Stopped production at 13 
sites for up to 1 hour. 
Affected around 50,000 
workers

2010 Natanz 
nuclear 
facility, Iran

Stuxnet malware (4 zero-
day exploits, stolen 
authentication 
certificates) injected via 
USB drive. Targeted 
Siemens ICS systems

Destruction of centrifuge 
tubes at the nuclear facility 

2014 German steel 
mill, 
Germany

Social engineering 
targeted ICS operators to 
deliver malware for 
Windows PCs in OT 
networks. Remote PLC 
reprogramming

Blast furnaces were shut 
down causing loss of control, 
interruption to process and  
physical damage to system

2014 Energy 
companies in 
US and 
Europe

Phishing emails, ICS-
related software 
containing Havex malware 
planted in vendor 
websites (“watering hole”)

Remote access Trojan used 
for reconnaissance 
(stealing), software 
download and code 
execution. Could have 
disrupted energy supplies

2015 Kemuri Water 
Company 
(KMC), US

Vulnerabilities in payment 
portal exploited using SQL 
injection & phishing. 
Credentials for AS400 
operating system stolen 
from a server

Personal identifiable 
information of 2.5 million 
customers leaked. Setpoints 
for water treatment 
chemicals altered (detected 
by KMC, so no impact)

3.2 Recent Attacks

Several academic works have reviewed the major historical ICS attacks.  Table 3 
discusses them.
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2015 Power grid, 
Ukraine

Plant login credentials 
stolen using spear 
phishing (BlackEnergy3). 
KillDisk malware deployed 
to wipe industrial PC 
memory and prevent 
rebooting. Telephony DoS 
used to jam customer 
reporting

Malware disconnected 
electrical substations 
causing power outage for 
around 225,000 users. 
SCADA firmware infected

2016 Power Grid, 
Ukraine

Vulnerabilities in Siemens 
SIROPROTEC relays 
exploited to infiltrate 
substation and create 
backdoors. Fully 
automated and 
“persistent” attack 
(Industroyer) 

20% of Ukraine’s capital, Kiev 
was disconnected from the 
grid for over an hour

2017 Ukrainian 
public and 
private 
sector, and 
multinational 
companies 
(e.g., Maersk, 
Merck)

NotPetya ransomware 
spread through a 
centralised update to 
MeDoc tax accounting 
system. Utilised the 
EternalBlue exploit.

Major economic losses 
(combined 10 billion dollars) 
through collected ransoms 
and irreversibly encrypted 
critical data. Radiation 
monitoring system at 
Chernobyl went offline

2017 Petro-
chemical 
plant, Saudi 
Arabia

Remote access methods 
used to infect a Safety 
Instrumentation System 
(SIS) Windows 
workstation, and 
reprogram the SIS to not 
function correctly 

Temporary disruption of 
industrial processes – no 
physical damage. 
Accidentally triggered 
automatic shutdown of 
processes allowing 
operators to be alerted

Table 3 - 1: History of major ICS cyberattacks ([7]–[17])
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Year ICS Attack vector/method Consequences
2018 Taiwan Semi-

conductor 
Manu-
facturing 
Company, 
Taiwan

WannaCry ransomware 
(variant) introduced by 
malicious software 
installed by supplier on IT 
network

Virus spread to more than 
10,000 machines. Shut down 
several production plants for 
1 day (revenue loss of ~$256 
million)

2019 Hoya 
Corporation, 
Thailand

Corporate network used 
to spread unnamed virus 
capable of stealing user 
access credentials

Partial shutdown of a large 
section of its factories for 
three days. Up to 100 
computers infected for the 
purpose of cryptocurrency 
mining

2021 The Colonial 
Pipeline 
Company, 
Georgia, US

Compromised/stolen 
credentials for virtual 
private network account 
(for remote access) used 
to deploy ransomware

100GB data stolen; entire 
pipeline shutdown for 6 days 
(major supply disruption in 4 
states); ransom ~$4.4 million 
in bitcoins paid

Table 3 - 2: History of major ICS cyberattacks ([18]–[20])

Some fundamental network hygiene and best practices that we know today 
could have lowered the chances of these attacks occurring, for example: 

1. Timely firmware and software patching of industry-grade computers. 
Given the availability requirements of ICS, this would need to be facilitated 
through redundant stand-in systems.

2. Improved password management and two-factor authentication. 
3. Staff training to recognise phishing attacks. 
4. Provision for manual overrides and fail-safe modes so that the operators 

can enable safe shutdown of the system if necessary after they have de-
tected tampering of any kind.

5. Stricter policies on the usage of removable media (e.g., USB drives) and 
personal devices (“Bring Your Own Device” [BYOD]). 

A common pattern of all the attacks was to reach down into the critical physical/
field layer (or the SIS) of the Purdue model and attempt to cause disruption/dam-
age to assets. In many cases, better isolation of the physical plant with the corpo-
rate network through a firewall, and Safety Instrumentation System (SIS) from the 
DCS could have hindered the attackers. Figure 6 shows the top six targeted ICS 
sectors including building automation systems, oil & gas, manufacturing, and en-
ergy. Raising awareness of these trends will allow the respective industries to be 
better prepared.
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Figure 6: Percentage of ICS computers on which malicious objects were blocked. Adapted 
from [1].

4. Intrusion Detection Systems
4.1 What Are They

Intrusions can be broadly defined as unauthorised activities of any kind regard-
less of whether they cause damage. This definition is valid in IT and ICS domains. 
However, as defenders of systems, we should be more cautious of malicious ac-
tivities in ICS networks whose purpose is to intentionally cause damage. Attacks 
vectors are becoming more sophisticated, and perpetrators of cyberattacks are 
using different techniques to evade detection. In this scenario, the main challeng-

All the attack groups and attack methods discussed so far have become more 
sophisticated in the current decade. Therefore, more advanced security tools 
and techniques, such as ML will be necessary. In particular, this report will 
address anomaly-based detection applied to the predominantly inse-
cure interactions in the lowest levels of the Purdue model.  
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es are to identify unknown and concealed malware/attack patterns. Traditional 
firewalls are unable to cope with these advanced attack techniques. 

Formally, an Intrusion Detection System (IDS) can be defined as a monitoring de-
vice or software that detects suspicious activities and generates alerts as early as 
possible when they are detected. Depending on the context of their deployment, 
an operator in a security operations centre (SOC), an independent incident re-
sponder, or other security staff can investigate the issue and take the appropriate 
actions. This is vital in order to satisfy the security requirements of availability, 
integrity and confidentiality of an Industrial Control System [21].

Overall, IDS can be useful in achieving real-time visibility into instances of 
potential compromises in an ICS, even if they are not linked to malicious 
activity. IDS can be deployed in different layers of the Purdue model as de-
scribed in previous sections. Although, historically, it has been primarily 
seen as an IT cybersecurity measure, it is playing an increasing role in OT 
security as well.

Figure 7: Example of publicly accessible IoT devices using Shodan [22]
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4.2 Types of Intrusion Detection Systems

In this section, the different kinds of IDS are discussed, and where appropriate, 
the limitations of each of these models has also been presented. Based on where 
they are deployed, i.e., the type of data they see, IDS can be classified into the 
following [23], [24]: 

Figure 8: Categorisation of Intrusion Detection Systems. Adapted from [24].

• Host-based (HIDS): This system monitors the host/device/endpoint it is de-
ployed in. Its functions include monitoring and analysing internals of a host 
such as configuration files and application activity, and comparing them with 
previous “snapshots” where applicable; and monitoring the host’s participa-
tion in the network, etc. Therefore, a HIDS’ visibility is limited to the host only. 
Scenarios they can deal with include unexpected modifications such as dele-
tion, overwriting sensitive system files and access rights of locked ports.

• Network-based (NIDS): This system is focussed on monitoring an entire net-
work it is placed within. Its functions involve monitoring and analysing real-time 
network traffic passing through firewalls/through pre-defined sensitive nodes 
for suspicious behaviour. The NIDS makes decisions based on packet metada-
ta (headers, etc.) and contents where suitable. However, in contrast to HIDS, 
these systems lack the internal visibility into the network’s hosts themselves.

It is therefore evident that the deployment of both solutions is necessary for the 
complete protection of the industrial control system’s assets and network. Fur-
ther, based on the technique they employ, IDS can be classified into three main 
categories [25], [26]:

Types of IDS

Based on 
Data Source

Host-based HybridMisuseNetwork-based Anomaly

Based on 
Detection 

Mechanism
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•  Misuse-/Signature-based: They use patterns/rulesets related to known 
threats from prior experience to define intrusions. Once an attack has been 
identified, the specific patterns or instructions related to it are used to gener-
ate a signature. This is then added to a defined list of known attack vectors 
and is used by the IDS solution to test incoming new content. This kind of 
system is easy to implement. While it has a high attack detection rate with a 
low false positive rate because all alerts are generated based upon detection 
of known-malicious content, it has a low detection rate for (unknown) threats, 
e.g., zero-day vulnerabilities.

• Behaviour-/Anomaly-based: They look for abnormalities, in the form of devi-
ations from “normal system behaviour”. These solutions employ some learn-
ing techniques to build a model of normal behaviour of the protected system/
network/device under conditions that are assumed to be attack-free. Subse-
quently, all future behaviour is then compared to this model. Any anomalies 
are labelled as potential attacks and alerts are generated. As a result, this ap-
proach can detect formerly unknown zero-day intrusions. However, this kind 
of model requires building an accurate model of normal behaviour in a way 
that balances incorrect alerts (or false positive predictions) with missed anom-
alies (or false negatives). 

• Hybrid/Specification-based: This approach was proposed to minimise the 
number of false positive associated with anomaly-based IDS, whilst being bet-
ter than knowledge-based approaches. According to this approach, a formal 
description of the base specification of the normal behaviour of the system 
is constructed using the support of an expert, and the IDS looks for deviation 
from this model. Hence, while this model requires more effort (human) to be 
set up and maintained, it can help improve the reliability of the IDS.  

While it appears that specification-based IDS are the optimal solution, they have 
not been most popular in recent times since they are less effective against nov-
el attacks than anomaly-based methods. Therefore, research has focussed on 
building more efficient data-driven Anomaly Detection Systems.

For the lower layers of the Purdue model, these anomaly detectors are built 
to take network traffic of physical parameters from the OT/industrial auto-
mation networks as input. Generally, anomaly detectors are designed to 
detect any abnormal behaviour. Based on the dataset and how they are 
trained, they could be used for fault detection and as a security tool.
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4.3 Comercially Available IDS Solutions

Table 4 provides a ready-made summary of some of the commercially available 
(mostly free) sole IDS solutions for different-sized businesses from an IT perspec-
tive. They could be used for network intrusion detection in the higher layers of 
the Purdue model. Different tools are suitable for different scenarios, operat-
ing systems, and vulnerability scenarios. Please note that these examples have only 
been provided for reference. It is recommended that the knowledge gained from this 
report be used along with expert knowledge of the threat landscape of the system(s) 
before making decisions regarding which solution to use/vendor to work with.

Tool Name Best for Type of IDS Features
Suricata Medium and 

Large 
Businesses 
(Free)

NIDS Data collection at the application 
layer (unlike Snort); network security 
monitoring: TLS/SSL, HTTP, DNS 
logging and analysis; inline intrusion 
prevention; understands higher-level 
(SMB, FTP, HTTP) and lower-level 
protocols (UDP, ICMP); integration 
with third-party tools (e.g., Anaval, 
Squil); scripting module

Manage-
Engine 
Log360

Small to 
Large 
Businesses 
(Paid)

NIDS Real-time incident management/
event correlation, integration with 
ticketing tools, diverse logging and 
log parsing, privileged user 
monitoring; forensic reporting for 
SOC; in-built ticketing

Zeek Any 
Business 
(Free)

NIDS Passive network traffic logging and 
signature analysis; monitor SNMP, 
FTP, DNS, and HTTP traffic; event 
engine to track triggering events; 
policy scripts for mining event data  

Snort Small and 
Medium 
Businesses 
(Free)

NIDS Core intrusion prevention using pre-
defined rules based on live threat 
intelligence, combined with packet 
sniffing and logging; options for 
anomaly detection; able to detect a 
variety of events including operating 
system fingerprinting, protocol 
probes, common gateway interface 
attacks, stealthy scans etc.

Table 4: Some commercial NIDS solutions for different-sized businesses ([27]–[31])
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Tool Name Best for Type of IDS Features
Open 
Source 
Security 
(OSSEC)

Medium and 
Large 
Businesses 
(Free)

HIDS Client/server-based logging including 
mail, FTP, and web server data; 
monitor unauthor-ised registry 
modifications and unauthorized 
access attempts to root account; 
rootkit detec-tion and real-time 
alerting

SolarWinds 
Security 
Event 
Manager

Large 
Businesses 
(Paid)

HIDS/NIDS Collects data from network and 
infrastructure logs to determine the 
amount and types of attacks on the 
network as part of a proactive 
detection and response system; low 
requirement for operator detection/
effort  

Security 
Onion

Medium and 
Large 
Businesses 
(Free)

HIDS, NIDS Free open-source Linux distribution 
for log management, enterprise 
security monitoring, and threat 
hunting (e.g., proactively searching 
for malicious attempts to compromise 
the system) 

Table 5: Some commercial HIDS solutions for different-sized businesses ([27], [32]–[34]) 

Online searches for OT environment-specific IDS present limited results. On the 
other hand, most security providers tend to provide integrated security solutions 
for Cloud, Endpoint, Data, Network, etc., together with Threat Intelligence, As-
set Management, Incident Response etc. in different combinations. Some exam-
ples of leading companies there are providing commercially available solutions 
as shown in market reports include CyberArk [35], Sophos [36], Kaspersky [37], 
BAE Systems [38], Dragos [39], SCADAfence [40], Forescout [41]. Some of these 
companies are dedicated to cybersecurity (OT and/or IT), whereas others are ex-
tensions of their component lines, e.g. ABB [42], Rockwell Automation [43], Cisco 
[44]. 

A minimisation of the number of inter-provider (of tools) interfaces could 
result in more efficient transport and utilisation of data with regards to 
building situational awareness and timely alarm reporting. Hence, this 
trend is advantageous.
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4.4 Anomaly-Based Intrusion Detection Systems

Figure 9: Categorisation of Anomaly Detection Systems

The focus of this work is specifically on “Machine Learning” models that sit under 
the soft computing and data mining category in Figure 8. These cover algorithms 
which undertake data-driven learning to learn characteristics enabling them to 
detect anomalies in previously unseen data. The statistics-based approach uses 
statistical properties such as mean, standard deviation, seasonality, etc., to build 
a statistical model/threshold for system behaviour. Knowledge-based approach-
es rely on prior knowledge from human experts, and previous experience, e.g., 
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network traffic corresponding to attacks, etc. Figure 10 depicts the general con-
cept of using an anomaly detection system – i.e., using inferred statistics, prior 
knowledge, or a model of system behaviour, to classify new data as an intrusion/
anomaly or not.

Figure 10: Concept of using anomaly detection systems. Adapted from [21].

5. Application of Machine Learning
This section describes how to acquire and prepare a dataset for ML model devel-
opment, the types of detection models available, what to consider when attempt-
ing to select one (or a set), how to train it, how to assess its performance, and how 
to continuously monitor it and make improvements. 

5.1 Acquiring and Preparing Machine Learning Datasets

5.1.1 Data Acquisition and Exploratory Data Analysis

Following the adage: “garbage in, garbage out” used in data-driven scenarios, 
the key to effective anomaly detection is in the dataset used for learning.  

Abnormal profile

Normal profile

Intrusion

Not Intrusion

Fuzzy Logic SVM Decision Tree Cluster

Statistical Neural Network KNN Genetic Algorithms
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Figure 11: Stages of data acquisition (blue) and preparation (green). Adapted from [45].

The steps of the data acquisition and preparation processes are shown in the 
Figure 11. The fastest way to build a prototype of a detection model is to use a 
ready-made dataset generated synthetically or collected as part of a different 
experiment in a related setting. Some useful online repositories for finding open-
source datasets [46] are:
 
• Google Dataset Search [47]
• Amazon AWS Marketplace [48]
• Kaggle [49]
• Microsoft Research Open Data [50], and
• scattered GitHub repositories [51]

However, collecting and using own data is the best way to make the models’ learn-
ing represent the unique use cases of systems more accurately. There are other 
security reasons for doing so – they are discussed in Section 5.7. 

Three key aspects need to be considered: 

1. “where” to collect data from? : Near safety-/security-critical assets/process-
es

2. “how” often to sample? : Related to the frequency of state changes of the 
system 

3. in “what” format to store the data? : Either 2D tabular form, or 3D time-
series format where the dimensions are [number of samples, length of sequence, 
number of signals].

Depending on the learning method which will be discussed in the next section, it 
may be necessary to collect a dataset that represents “normal” system behaviour 
– i.e., it is attack and fault-free. 

Data Acquisition Data Preprocessing Feature Engineering

1. Decide where, when and 
how to collect data, and 
its storage format and 
location.

2. Collect timeseries data.
3. Analyse data to ID 

patterns, relationships, 
errors.

4. Repeat collection steps if 
necessary. Store in an 
accessible format once 
quality is satisfactory.

1. Split into training 
(validation)

2. Treat corrupt and missing 
values.

3. Encode categorical 
features.

4. Scale features.

1. Filter features with 
low/zero variance. 

2. Filter outliers based on 
their Z-scores. 

3. Extract higher order 
features using 
Autocorrelation and 
Fourier Transform. 

4. Select and incorporate 
meaningful higher order 
features into the feature 
vector (training set).
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Real-world cybersecurity testbed

An example is the widely used Secure Water Treatment (SWaT) dataset, creat-
ed by the iTrust research centre in Singapore. They utilised the testbed as 
shown in Figure 12 for data generation. It demonstrates how the potential 
cyber-attack points were considered while instrumenting the testbed for data 
collection. The full dataset contains fifty-one tags (25 sensors & 26 actuators) 
sampled every second [52]. Many other public research datasets are also col-
lected from running small-scale physical testbeds, or from simulations mim-
icking real-world processes.

Figure 12: SWaT testbed used for creating their dataset. Physical water treatment process 
in SWaT and attack points used in the case study. P1 though P6 indicate the six stages in 
the treatment process. Solid arrows indicate flow of water or chemicals in the dosing sta-
tion. Dashed arrows indicate potential cyber-attack points. LIT: Level Indicator and Trans-
mitter; Pxxx: Pump; AITxxx: Property indicator and Transmitter; DPIT: Differential Pressure 
Indicator and Transmitter [52].
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In most ICS scenarios, since the order of the data has significance (i.e., temporal 
correlations exist), it is recommended that the timestamp of sample collection is 
included as a feature in the dataset. This is referred to as the “timeseries” format. 
Further, while anomaly detection and ML-based classification on unstructured 
image/video data is a growing field, in the world of intrusion detection systems 
for cybersecurity, the datasets used are still predominantly numeric and can be 
easily displayed in tabular form, i.e., as structured data. Hence, the recommend-
ed format is a structured timeseries – this guideline will focus on this format. 

There are three paths with respect to data collection which depend on the abili-
ties to collect normal operational data (i.e., fault and attack-free) and abnormal 
data (faulty, attack) in isolation, and thereby affect machine learning modelling 
strategy (section 5.3). This is shown in Figure 13. For modelling purposes, the da-
taset would be comprised of one/two parts: a features dataset (signals) and, op-
tionally, a label dataset (categorizing data into normal (0) or anomalous (1)). Note 
that, some open-source software libraries use a different labelling convention: -1 
for anomalous, and 1 for normal data.

Figure 13: Data acquisition process decisions with recommendations regarding ML 
strategy
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The term “Exploratory Data Analysis” (EDA) in data science refers to the initial 
process of analysing and investigating the acquired data using summary statistics 
and data visualisation techniques in order to discover patterns, spot outliers, test 
hypotheses/check assumptions and identify potential methods of modelling. For 
example, it would be useful to compute the following on the dataset: length of 
the dataset and corresponding timestamp range, the datatypes (e.g., integer, 
floating-point, Boolean/categorical, etc.), number of signals/features, range and 
measures of central tendency (mean/median) for each feature, number of miss-
ing values, and number of outliers/if any (visually).

An important part of the data acquisition process is ensuring that the col-
lected data meets the required quality standards by either EDA or by run-
ning validation/consistency checking scripts. For example, if there is a require-
ment for the data to represent only normal behaviour, at the time of data collec-
tion – were there any abnormal activities such as system/component faults, main-
tenance activities, or exceptionally, a security attack. Some stages of the data ac-
quisition process may need to be repeated as the integrity and veracity of the 
training dataset are particularly vital for IDS. An important assumption, valid 
in most cases, is that the defender does not know of all possible faults and at-
tacks which could affect their system. 

Finally, the validated data is stored on the cloud or on premises servers, within a 
data warehouse (more likely for structured data), a data lake or elsewhere, in an 
accessible manner. While this section focusses on developing the models for the 
first time, the same pipelines and methodologies would apply after model de-
ployment (only inferences, no training). However, post-deployment (Section 5.6), 
the quality checks with regards to eliminating outliers on the collected (“testing”) 
dataset tend to become less rigorous as the model has already learned to identi-
fy anomalies.

Refer to Figure 11 again for a summary of the different sub-stages of data prepa-
ration: data pre-processing, and feature engineering (filtering and extraction). 
Specifically, for ICS datasets, there are some special statistical characteristics that 
need to be considered when attempting anomaly detection: 

• Due to the repetitive nature of the process, there is a need to preserve the 
temporal coherence while splitting the dataset and training the model.

• Due to the high interdependence of devices in ICS, a high correlation between 
dataset features (columns) is desired.
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5.1.2 Data Preprocessing

As seen in Figure 13, there is a cyclic dependency between model choice and 
data collection pipeline and therefore, they would need to be considered in 
parallel. For example, with unsupervised ML, there is no need for a separate 
training set or for the samples to be labelled in advance. An unsupervised model 
would learn to separate normal from anomalous instances by itself.  On the other 
hand, with supervised ML/semi-supervised ML, there is a need for separate and 
labelled training, validation, and testing datasets. More details about this are pro-
vided in Section 5.3.

If dataset splitting is required, the rule of thumb is to split the dataset in a ratio of 
80% (train): 20% (test; validate). The train/test split would need to happen first; 
subsequently, the new training set is once again split to create a validation set. 
After splitting the dataset, it is recommended that incomplete or corrupt time-
series sequences are addressed. If the Python language is selected, there are 
some easy-to-use, in-built tools within the Pandas library to deal with them. 

Features could either be numeric or categorical. In case they are categorical, to be 
able to be understood by a Machine Learning algorithm, they need to be encoded 
– i.e., into binary values split over multiple features based on the number of pos-
sible categories (“one-hot-encoding”); or ordinally (ordinal encoding). Finally, since 
different features could be measured in different units, it is recommended that 
the datasets are standardised or min-max normalised based on the training da-
taset’s statistics. However, this would once again depend on the choice of algo-
rithm and the distribution of the data:

5.1.3 Feature Engineering

Two stages of feature engineering are used to prepare the training dataset 
for machine learning. The first stage is filtering where the goal is to eliminate 
features/data points that do not change in the entire dataset or conversely, those 
whose statistical distributions in the dataset partitions vary significantly. Note 
that these operations need to be carried out without snooping bias based on the 
category of ML detection algorithm, i.e., selecting models to employ based on the 
test set (inadvertently maximising performance). 

For features which do not vary much or in contrast vary significantly, variance 
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thresholds/z-score (Z)-based filtering for individual points can be utilised. 

The second and final stage (optional) is related to extracting higher order features 
from the existing set of features with the help of expert knowledge. One possibility 
is to extract the repetitive actions that the ICS performs in the form of additional 
features using autocorrelation and the Fourier Transform.

Autocorrelation is defined as the correlation of a signal with a delayed version of 
itself, as a function of k (lag parameter). For a timeseries, the delay or lag can be 
applied over a time window W. Formally, autocorrelation can be defined as shown 
above, where xw is the value that the feature takes at instant w. Autocorrelation 
could be applied to find repeating patterns in the signal from sensors and actua-
tors.

The Fourier Transform is a mathematical tool that allows us to decompose a signal 
into the frequencies from which it is formed, i.e., convert from the time domain to 
the frequency domain. The Discrete Fourier Transform (DFT) could be used with a 
numeric timeseries feature as in the ICS case where xw is the width of the wth sam-
ple of x and W is the sample count.

Together, these latter two techniques are meant to provide information about the 
periodicity of the signal, in terms of each feature. Each of them produces a vector 
output for each feature to which statistical methods such as mean, standard devi-
ation, minimum, maximum, and range can be applied. The result is 10 new features 
(5 each), which can be added to the dataset after inspection.

5.2 Types of Anomalies

Anomalies (or outliers – used interchangeably) are often defined as data in-
stances that significantly deviate from most other instances in the dataset. 
Following a behaviour-driven taxonomy proposed by [53], anomalies can be divid-
ed into two branches as described below. Refer to Figure 14 and Figure 15 for visual 
representations:
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1. 1. Point-wise:
a. Global: Points (“spikes”) that significantly deviate from the rest of the points.
b. Contextual: Points that deviate from their corresponding context, where con-

text is defined as neighbouring samples within a certain range, with respect to 
time.

1. 2. Pattern-wise:
a. Shapelet: Sub-sequences with dissimilar shapelets compared with the normal 

shapelet. A shapelet is a small and unique (sub-sequence) descriptor of a time-
series.

b. Seasonal: Subsequences with unusual seasonalities compared with the overall 
seasonality. Retains the same shapelet and trend (long-term movement pat-
tern).

c. Trend: Subsequences that significantly alter the trend of their parent time-
series, resulting in a permanent change of the mean. Retains the shapelet and 
seasonality.

 

Figure 14: Point-wise anomalies: Global (Left) and Contextual (Right) [53].

Figure 15: Pattern-wise anomalies: Shapelet (L), Seasonal (Middle), and Trend (Right) [53].
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5.3 Types of Detection Models Available

This section provides details about the types of detection models available with a 
focus on the likely profile of the dataset as shown in Table 6.

Property Value
Temporal Timeseries (Time Period ranging from minutes to hours)
Number of features Multivariate with high number of features (>20)
Data types Combination of continuous and discrete (categorical) 
Volume High (likely to be growing due to frequent sampling)
Stationarity (of 
mean)

Yes, however, operational drift possible resulting in 
moving mean

Purity Contaminated with outliers like faults (depending on 
collection range)

Correlations High degree of inter-feature-correlation

Table 6: Possible profile of collected ICS dataset

Figure 16: Families of anomaly detection algorithms with popular examples. References 
can be found in Table 7.
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There is an ocean of possible timeseries anomaly detection as shown in Figure 
16, and they can be categorised along different dimensions. Only one such meth-
od is utilised in this document for clarity.

Firstly, there are two key dimensions along which models can be classified: di-
mensionality (univariate and multivariate), learning method (supervised, semi-su-
pervised and unsupervised). Where, dimensionality of the data refers to the num-
ber of features in the timeseries dataset, and learning method refers to the pres-
ence of labels (normal or anomalous) in the dataset which in turn corresponds in 
the way the model is trained. Note the earlier recommendations made in Figure 
13. The difference between them is as follows:

• Supervised Learning: Requires labelled training data as shown in Figure 15. 
For each instance of the training dataset, this method uses n features from the 
feature vector X, i.e., [x1,x2,x3,x4,…,xn], to learn the class variable (label Y). Hence, 
as with other categories, the model learned refers to a function f mapping 
from vector X to Y such that Y=f(X). 

• Unsupervised Learning: Uses feature vector X without a corresponding class/
label dataset Y. The assumption is that the dataset contains both ‘normal’ and 
‘anomalous’ data and the algorithm would need to appropriately discriminate 
between them. The trained model can then be used to make inferences on 
real-time data at a sample-by-sample basis (Fig. 16).

• Semi-Supervised Learning (“some supervision”): This is the category which 
sits between supervised and unsupervised learning, i.e., the training dataset 
involves a small number of labelled examples and a large number of unla-
belled examples. In one form, training is split into three phases as seen in 
Figure 19. This is particularly relevant to practical scenarios where there may 
be a large quantity of data, but not a viable means to label each sample. How-
ever, the form of semi-supervised learning of relevance in this report is 
referred to as “novelty detection” wherein the training dataset repre-
sents normal operation (with limited/no outliers) only. The models then 
search for “novelties” at test time. 
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Figure 17: Depiction of supervised learning

Figure 18: Depiction of unsupervised learning

 
 
 
 

Figure 18: Depiction of unsupervised learning
Figure 19: Depiction of semi-supervised learning (traditional)
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In Machine Learning, more generally, there is another family of learning methods 
called reinforcement learning, however, anomaly detection tools using this ap-
proach are less common. 

The third and final dimension which will be used to classify ML-based anomaly 
detectors is based on how they categorise data points methodically. Figure 20 
depicts this categorisation.

Figure 20: Techniques for timeseries anomaly detection

For each of these categories (references in Table 7), the most common training 
methodology is presented in parenthesis:

• Forecasting (Semi-supervised): Use a learned model to forecast several 
steps based solely on the other timeseries data points in the preceding context 
window. Recurrent Neural Network (RNN)-based models and ARIMA are 
examples. 

• Encoding (Semi-supervised): Build a model of normal behaviour by learning 
to convert normal training timeseries subsequences into lower dimensional 
latent space (encoding). Anomaly scores are then computed based on these 
latent space representations. GrammarViz, LaserDBN, and MultiHMM are 
examples. 

• Reconstruction (Semi-supervised): Like Encoding-based models, however, 
they also subsequently use the learned model to reconstruct other encoded 
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subsequences when the model is deployed (testing phase) which are compared 
against the original, observed values. Some examples are Autoencoder and 
Generative Adversarial Network (GAN)-based models.

• Distance (Unsupervised): Use specialised distance metrics to compare points 
or subsequences from one timeseries with another. Generally, anomalous 
subsequences are expected to have larger distances. Several classical ML 
algorithms such as K-Nearest Neighbours (KNN), Local Outlier Factor (LOF), 
One-Class SVM (OCSVM [55]; normally, semi-supervised) are in this category.

• Distribution (Unsupervised): Estimate the distribution of the data or fit a 
distribution model to the dataset. Abnormality is assessed based on frequency 
(probabilities, likelihoods, distances to prior). Some examples include COPOD, 
Fast-MCD, etc. 

• Tree-based (Unsupervised): Build an ensemble of random trees that attempt 
to partition the points or subsequences of the test timeseries through recursive 
selection of random features and split values. Abnormality is based on the 
number of splits required to isolate the point – tends to be easier to isolate 
anomalies. Versions of Isolation Forest (iForest) fall into this category.

Most of these algorithms rely on comparing (i.e., similarity) prediction/
reconstruction/ encoding, etc. with an expected value. To do this, they 
systematically compute an anomaly score. For example, forecasting-based 
methods use the trained model to predict some future samples ((xi)) and then 
compare them with the observed test values (xi). A subsequence S=xp,…,xp+n-1 of 
length n is therefore anomalous if:

There are several approaches for selecting a value for τ; most often it is considered 
a hyperparameter to be adjusted during validation to minimise error-rate.
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Dimensions Learning Type Method Area Family
Multivariate Unsupervised k-Means [56] Classical ML Distance
Multivariate Semi-supervised RobustPCA [57] Classical ML Reconstruction
Univariate Unsupervised NoveltySVR [58] Classical ML Distance
Multivariate Supervised XGBoost [59] Classical ML Trees
Univariate Unsupervised GrammarViz 

[60]
Data Mining Encoding

Univariate Unsupervised VALMOD [61] Data Mining Distance
Univariate Unsupervised PST [62] Data Mining Trees
Univariate Unsupervised STOMP [63] Data Mining Distance
Univariate Unsupervised ARIMA [64] Statistics Forecasting
Multivariate Unsupervised VAR [65] Statistics Forecasting
Multivariate Semi-supervised Fast-MCD [66] Statistics Distribution
Univariate Unsupervised PCI [67] Statistics Reconstruction
Univariate Unsupervised Sub-LOF [68] Outlier 

Detection
Distance

Multivariate Unsupervised iForest [69] Outlier 
Detection

Trees

Multivariate Unsupervised COPOD [70] Outlier 
Detection

Distribution

Multivariate Supervised HIF [71] Outlier 
Detection

Trees

Multivariate Supervised MultiHMM [72] Stoch. Learning Encoding
Multivariate Semi-supervised LaserDBN [73] Stoch. Learning Encoding
Multivariate Semi-supervised HMAD [74] Stoch. Learning Encoding
Multivariate Unsupervised SmartSifter [75] Stoch. Learning Distance
Univariate Unsupervised FFT [76] Signal Analysis Reconstruction
Univariate Unsupervised SR [77] Signal Analysis Reconstruction
Univariate Unsupervised DWT-MLEAD 

[78]
Signal Analysis Distribution

Multivariate Unsupervised Torsk [79] Deep Learning Forecasting
Multivariate Supervised NF [80] Deep Learning Distribution
Multivariate Semi-supervised TAnoGan [81] Deep Learning Reconstruction
Multivariate Semi-supervised AE [82] Deep Learning Reconstruction
Multivariate Semi-supervised LSTM-AD [83] Deep Learning Forecasting

Table 7: Examples of Univariate and Multivariate anomaly detectors belonging to different 
families
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Although most of the algorithms highlighted so far work with semi-supervised 
and unsupervised learning methods, there are several options for supervised 
learning which can simply be considered a two-class/multi-class classification 
problem. Some examples are Support Vector Machines, Random Forest, and 
Deep Learning algorithms such as Dense Feed-forward and RNN-based networks. 
Table 7 shows some more examples of timeseries anomaly detectors paired 
along with the family of algorithms and area they come from, with the first two 
dimensions on the left. 

5.4 Selecting a Detection Model

Several review papers [84], [85], [86], [54], [87], [88] have attempted to benchmark 
the performance of these different categories of algorithms periodically. The 
common conclusion from all their works can be summarised in one line: “There is 
no one-size-fits-all problems algorithm”. Each algorithm has its own strengths 
and weaknesses. As stated before, the purpose of this work is to allow 
decision-makers to ask the right questions and to have a birds-eye view 
when talking about anomaly detection algorithms. Therefore, instead of 
recommending a particular learning method (supervised, semi-supervised or 
unsupervised) and a particular algorithm, this section will suggest different 
aspects to consider when making this decision – refer to Table 8.

One of these reviews’ result is discussed for reference [53]. It found that classical 
(ML and statistical) algorithms outperform Deep Learning (DL) models in most of 
the real-world datasets they considered, e.g., Autoregressive (AR), iForest, OCSVM. 
Particularly, GANs (GANs) were unable to detect any outliers due to the complexity 
of real-world anomalies. Note that, in this work, “real world datasets” refers to the 
credit-card fraud detection, IoT for drinking water monitoring, server attack 
monitoring, and extreme space weather detection.
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Operations Performance {5.5.2}
1. Ease of deployment & 

maintenance {5.6}.
2. Model size {5.7}.
3. Inference time {5.6}.
4. Ease of retraining {5.6}
5. 5Usability/Interpretability 

{5.5.2}

1. High performance metric 
(accuracy) to detect relevant 
anomaly types.

2. Acceptable number of False 
Positives and False Negatives to 
prevent information overload.

Data Robustness
1. Amount of data required. 
2. Labelling effort.
3. Ability to work with lots of 

features. 
4. Ability to work with a large 

dataset.

1. Performance with unseen 
anomaly types – e.g., zero-day 
attacks {5.7}.

2. Performance with limited 
training data.

3. Resilient to adversarial attacks 
(data poisoning and noise) 
{5.7}.

Table 8: Decision matrix for selecting anomaly detectors. References to future sections in 
curly braces.

Other noteworthy points from common knowledge amongst the community is 
that OCSVM is memory efficient, works well with large number of features, 
however, it struggles with long training times with large datasets, and often do 
not meet real-time performance requirements. On the other hand, KNNs are 
simplest to implement but struggle with computational inefficiency. A visual 
example is shown here of how one algorithm’s strengths are another’s weakness 
in Figure 21. 

The advice for selecting the most appropriate ML model(s) is to try as many 
of them as possible, and then decide which would work best based on the 
decision matrix provided in this section. It must also be emphasised that the 
model selection process could conclude by saying that multiple models are 
needed to be used in parallel. This same framework applies in case they are 
deployed independently (without interaction). . 
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Figure 21: Synthetic ECG data shows how Sub-LOF detects point anomaly, and LSTM-AD 
detects subsequence anomaly, but not vice-versa. Plot on the bottom shows the computed 

anomaly score computed against time (x axis).[89]

5.5 Training the Detection Model and Assessing Perfor-
mance

5.5.1 Training and Validation Plan

With regard to implementing the shallow Machine Learning-based models, there 
are several off-the-shelf methods of utilizing them – the most common of which 
is the trusted scikit-learn (sk-learn) library in Python. Deep Learning models on 
the other hand have several open-source implementations on GitHub, however, 
they would need to be carefully selected after inspection, or built from scratch. 
Figure 22 provides an overview of the training and validation process.

Figure 22 (Left): Approach for Supervised and Semi-Supervised Learning [45] &                                                                                 
Figure 23 (Right): Depiction of Stratified K-Fold Cross-Validation (CV) [12] for multi-class 

problems [90]

Anomaly Detection

Validation

1. Select a prediction model

2. Select hyperparameters and their range

3. Train and fine-tune the prediction model

4. Select appropriate threshold technique

1. Define metrics to evaluate performance

2. Validate results
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Staying with the example of the ready-to-use Machine Learning models available 
from sk-learn, this library provides separate functions which can be called for 
fitting the model and making predictions with the trained model on the test 
dataset. Each of these models tend to have hyperparameters which could be 
tuned according to the dataset to maximise performance. 

With supervised learning models (fully labelled dataset) and semi-supervised 
learning, cross-validation is the commonly used method to fine-tune 
hyperparameters. Since there is considerable class imbalance in ICS datasets, i.e., 
only a small number of anomalous samples, it is recommended to perform 
Stratified K-Fold Cross Validation. Figure 22 shows an example where the data is 
sorted according to the class labels and how this method preserves the class 
frequencies in each “fold”. 

With semi-supervised learning (novelty detection format) the formulation often 
utilised for anomaly-based intrusion detection is one-class classification, i.e., the 
model is trained the learn the normal behaviour (one class) of the system only, 
and its parameters (including detection threshold τ) are tuned according to a 
mixed dataset with anomalies. 

However, with unsupervised learning (unlabelled dataset), it is not feasible to 
tune hyperparameters as there is no prior knowledge about which samples/
sequences are normal or anomalous. In this case, there is no conventional 
validation step. Hence, this does not require a separate validation subset. This 
format is also referred to as “outlier detection” since the problem is now about 
being able to detect any observable (by the model) outliers from a dataset. The 
training process therefore simply consists of fitting the model to a training dataset 
to allowing it to form a decision boundary(ies) between the two classes. 

5.5.2 Assessing Model Performance

As noted earlier, anomaly detection is an imbalanced problem, i.e., 90+ percent 
of the time, the system is operating as “normal”, and only the small remaining 
percentage of the time faults and anomalies, which would raise alarms, can be 
seen. Therefore, suitable metrics must be selected to account for this.

Some preliminaries used in the following definitions:

• True Positive (TP): Number of anomalies properly detected.
• True Negative (TN): Number of non-anomalies properly classified as 
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anomalous.
• False Positive (FP): Number of non-anomalies wrongly classified as anomalous.
• False Negative (FN): Number of anomalies wrongly classified as non-

anomalous.

Based on these definitions, the most used metrics for performance assessment 
are:

1. Precision (Pr): “how many of the detected anomalies are anomalous”.

2. Recall (Re): “how many of the anomalies are detected”. Also called sensitivity.

In isolation, Precision and Recall do not provide the complete picture of detector 
performance. For instance, it is possible to achieve 100% recall by classifying 
every item as anomalous, and it is possible to achieve 100% precision by detecting 
only a small number of extremely likely anomalies as anomalous. Therefore, 
other metrics which combine these metrics as shown below are necessary.

3. F1 Score (F1): Combines and equally balances precision and recall through 
their harmonic mean. A better model will have a higher F1 score and vice-versa.

4. Area Under Curve – Receiver Operating Characteristic (AUC-ROC): This is a 
performance measurement at various classifier threshold (τ) settings. ROC is a 
probability curve, and AUC represents the degree of separability between the 
anomalies and the normal instances. It is plotted as False Positive Rate (FPR) versus 
True Positive Rate (TPR). An excellent model has AUC near 1 and vice-versa. Figure 
24 shows a scenario where the probability distributions of normal and anomalous 
samples overlap leading to some FNs and FPs. There are several approaches such 
as using the Geometric Mean of sensitivity and specificity to tune the detection 
threshold.
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Figure 24: Impact of overlapping distribution of two classes affects the AUC curve [91]

Alternatively, a Precision-Recall (PR) AUC can also be used. The decision about 
which to use would depend on the quantity of anomalous data (faults, attacks, etc) 
available. For instance, ROC-AUC can be optimistic on severely imbalanced 
datasets. Therefore, it would be better than PR-AUC for cases with more anomalous 
data and vice-versa. Beyond these, there are several OT-specific metrics which 
could be created ad-hoc to measure early detection, inference time, etc. in 
accordance with Table 8.

Global Intepretation Local Intepretation
Being able to explain the conditional 
interaction between dependent 
(response) variables and independent 
(predictor or explanatory) variables 
based on the complete dataset. Helpful 
in explaining the context of the decision 
classification.

Being able to explain the conditional 
interaction between dependent 
(response) variables and independent 
(predictor or explanatory) variables 
for a single row or a subset of rows. 
Helpful in identifying local trends and 
intuitions.

Figure 25: Global and local levels of model interpretability [92]
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The final aspect to be considered when assessing model performance is its 
interpretability. In the avenue of anomaly detection for cybersecurity, interpretability 
of models is vital as it allows an operator/analyst to select suitable countermeasures 
where appropriate and appropriately direct their attention. There are three pillars 
of interpretation:

1. Transparency. 
2. Ability to question.
3. Ease of understanding

Being able to understand why the 
model made a certain prediction, i.e., 
causality.

Further, interpretability can be assessed at a global level and a local level as shown 
in Figure 25. 

Unfortunately, there tends to be a trade-off between model accuracy and 
interpretability as shown in Figure 25. However, Explainable AI (or XAI) is a growing 
field which is working to eliminate the perception of ML models (particularly DL) as 
“black box” predictors. There are currently three different approaches which can 
be used to maximise usability of the discussed ML algorithms:

• Data Visualization: Dependent on the number of features, it could be possible 
to map the model predictions back to the feature set. Dimensionality reduction 
techniques may need to be employed. A simple example of a three-class 
classification of flower based on dimensions of petal and sepal length and 
width, i.e., 4 features.

• Model Selection: There are some models which are easier to interpret than 
others. An example is Random Forest (Ensemble) which can clearly associate 
its prediction with feature importance values. 

• Separate Tools (“Post-hoc”): Work is being done to use mathematics and 
game theory to associate a feature’s “contribution” to a model prediction 
independently. Examples of this are Local Interpretable Model-Agnostic 
Explanations (LIME), Shapely Additive Explanations (SHAP), SKATER (e.g., in 
Figure 26), etc.



March 2023 | Page 46THE PETRAS NATIONAL CENTRE OF EXCELLENCE FOR IoT SYSTEMS CYBERSECURITY

Deployment Guidelines for Industry: 
Machine Learning-based 

Intrusion Detection Systems

SUPPLY CHAINS AND
CONTROL SYSTEMS

Figure 26: Example application of SKATER: Partial Dependence Plot of the relationship 
between Number of years of Education vs Probability of Income More than $50k. [93]

5.6 Deploying and Maintaining the Model

Model deployment refers to the phase of the model’s lifecycle where it is 
operationally used for securing the ICS. Through discussions with industrial 
partners and a review of available commercial options, it was observed that there 
are three possible locations where the model can be deployed:

1. Cloud: This method involves sending the process dataset (and/or network 
dataset) to the cloud where the data preparation pipelines, and machine 
learning algorithms can be implemented.

2. Fog: Decentralised computing (multiple “nodes”) placed close to the edge. A 
virtual machine may need to be instantiated on a fog device to run analysis. 

3. Edge: Closest possible to the edge devices. Loosely connected structure 
whereby these devices tend to work with the data independently.
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Cloud Fog Edge
Latency High Medium Low
Scalability High, easy to scale Easy within 

network
Hard to scale

Distance from 
Edge

High Close to edge Zero, at the edge

Analysis Less time-sensitive 
data processing; 
permanent 
storage.

Real-time; flexible 
– sends data to 
cloud or processes 
locally

Real-time; allows 
instantaneous 
decision-making

Compute High Limited by device Very limited
Interoperability High High Low

Table 9: Comparison options for anomaly detector deployment [94], [95]

These fundamental differences, as shown in Table 9, inherently make these 
options be better suited to different use cases discussed next. Focussing on IDS, 
due to the limited compute and data storage capabilities of the Edge devices, the 
candidates for deploying Machine Learning-based anomaly detection will be the 
Cloud and Fog levels. The final choice will be once again specific to the requirement 
of the cybersecurity operation. Some scenarios are presented below. Note that 
time-criticality is closely linked to safety-criticality. 

• security-critical AND time-critical: Deploy in Fog layer. Concentrate and 
process data locally to drive any necessary control response to ensure safety. 

• security-critical AND NOT time-critical: Deploy either in Fog or Cloud layers 
dependent on the nature and size of the dataset, and the type of model 
selected for analysis. 

• NOT (security-critical OR time-critical): This could be considered as the 
Optimisation case. Once again, this can be done either in the Fog or Cloud 
(preferred) layers.

• NOT security-critical AND time-critical: This could be considered as the 
Fault Detection case, but not all faults are time-critical. Due to time constraints, 
it is recommended that the model is deployed at the Fog layer so that the 
operator can respond as soon as possible. 
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Figure 27: Industrial IoT (IIoT) Data Processing Stack. Adapted from [96].

As stated earlier, it is possible that there is a requirement to run multiple 
independent models at different layers, each prioritizing different subsets of the 
entire (large) feature set. This is feasible as well and can be realised by following 
the same framework presented in this document.

While Figure 27 may indicate that, to leverage the benefits of any of these layers, 
they need to be used together with the other layers – this is not necessarily true. 
There are several different configurations wherein Edge, Fog and Cloud capabilities 
can be obtained either in isolation or as pairs, e.g., Edge-Cloud: data collected by 
IIoT devices in the field is transferred to the cloud for optimisation. 

Having deployed the model at the suitable juncture, the next consideration which 
is important concerns how to ensure the model stays relevant and accurate over 
its lifetime. Figure 29 presents this unified picture of Online Learning. Particularly 
for ICS, it is essential that the deployed Machine Learning models and the datasets 
are monitored and kept up to date with any changes made to the process itself. 

Online Learning, as the name suggests, is a proactive approach whereby the 
learning continues even after the system is online. This means more data that the 
system capture is fed back into the data preparation and model training (and 
validation) periodically. As a result, the anomaly detector’s detection thresholds 
are in tune with the current state of the system. As a simple example, if some 
known faults (but previously unconsidered) are observed in the field, these can 
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be added to the validation set and the model’s hyperparameters and detection 
threshold can be tuned to further increase generalisability of the model. 

Figure 28: Edge-Cloud case [97]: Data collected from the Field layer/Control Network 
(pressure transducers, motors, etc.) is fed to Cloud-based Information-as-a-Service (IAAS) 

platforms and/or to Data Centres for optimisation/analytics.

Figure 29: Adaptive, online learning framework. Red represents the online learning 
section; remainder is done offline. Adapted from [98].
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Another option is a reactive approach whereby the performance of an anomaly 
detector is monitored over time, and if there are unwarranted but statistically 
significant changes in the detections/detection metrics, then the system can be 
re-trained (re-fitted) with a fresh batch of data. This would still classify as Offline 
Learning; however, it is also a suitable way to keep the detector up to date.

5.7 Challenges/Limitations of ML-based Anomaly 
Detection

While Machine Learning for Anomaly Detection has shown tremendous promise 
for securing industrial control systems in this new IT-OT converged era and 
increasing penetration of IoT, there are still some key challenges which remain. 
This section talks about the common issues faced by all Machine Learning 
algorithms.

5.7.1 Dataset

The dataset used to train the model is of paramount importance. Misrepres-
entations of operations of any kind could lead to the model learning unimportant 
and incorrect patterns. For example, if a semi-supervised learning model is 
selected in a one-class learning format, it is essential that during the data collection 
phase, the system is kept as close to error and fault-free as possible. 

Considering this, one of the attack objectives for cybersecurity breaches is to gain 
access to the dataset to “poison” it and thereby compromise its integrity and 
reliability. This is referred to as the Dataset Poisoning attack [99].

More generally, one of the key drawbacks of Machine Learning and even more so 
for Deep Learning is the amount of data they require for learning. Hence, lack of 
availability of sufficient training data is a major issue – particularly for 
anomalous samples. For academia, this is due to the lack of good open-source 
datasets, and for industry, this is due to challenges associated with constructing 
adequate data acquisition and preparation pipelines, and the low incidence of 
cyberattacks from which training/testing datasets might be established. If 
supervised and semi-supervised learning approaches are chosen, it must be 
noted that hand-labelling data is expensive (time-consuming). From an 
attacker’s standpoint, training real-life ICS with open-source datasets poses 
further challenges as it allows them to find weaknesses in the IDS through 
adversarial transfer learning [100], i.e., different models trained using the same 
dataset tend have similar trends in detection performance.
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5.7.2 Model

As discussed previously, one of the major challenges with the Machine Learning 
models themselves is the need to trade-off between accuracy and 
interpretability. Several approaches have been recommended in this document; 
however, more research is needed in this area of Machine Learning before mature 
solutions are made available for use in industry. 

The second challenging area is adversarial attacks on machine learning 
algorithms. An example of this with image data is shown in Figure 30. In this 
example, a small amount of adversarial noise is added to the image to confuse 
the image classifier. The same principle applies on ICS data such that malicious 
attackers will attempt to launch stealthy attacks against a plant by first creating 
an attack to deceive the anomaly-based detector.

Figure 30: An example of adversarial noise being used to deceive an image classifier [101].

Fortunately, this is also another active area of research. Methods such as 
adversarial re-training are well-established whereby a small percentage of 
adversarial data is mixed in with the training dataset to teach the machine learning 
model to be more robust to adversarial examples, whilst only slightly compromising 
(if any) detection performance. 

The third challenging area is to do with the generalisability of models, given the 
heterogeneity of physical processes and/or network data seen in an ICS plant. 
There is another interdependency here between a model’s representation 
power vs training time and model size. As a general trend, shallower models 
tend to have lower representation capabilities compared to deeper models which 
use non-linear combinations of the input features to learn. With supervised 
learning-based detectors, the possibility of overfitting (model learns the given 
dataset too well and will not perform on unseen data) needs to be accounted for 
using regularisation.
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Finally, most pertinent to ICS is the ability to detect zero-day and previously 
unseen attacks. Supervised learning algorithms cannot do this. Performant 
semi-supervised and unsupervised learning algorithms should, however, be able 
to detect them. The advantage of supervised learning approaches is that if all 
possible attack patterns are known beforehand, it could result in an optimal 
solution. The downside with semi-supervised and unsupervised learning 
algorithms is their high reliance on an operator tuning their detection thresholds. 
If this is not done correctly, they tend to produce a high number of errors (FPs 
and FNs). While False Positives are more distracting for an operator, reducing the 
model’s sensitivity could result in (increased False Negatives) imply that critical 
attacks and faults would not be recognised.

6. Closing Remarks 

To keep up with the shifting attack landscape, operators of industrial control 
systems need to move away from the traditional principle of security by isolation. 
With the increasing digitization of OT, cyber defence techniques such as intrusion 
detection (IDS), more prevalent in the IT space, are becoming relevant for OT and 
industrial control automation. ML-based IDS have proven to be a promising 
technology within the research literature and are being gradually introduced in 
industry to early adopters through specialist cybersecurity vendors. Their 
strengths are in being able to learn and separate normal from abnormal system 
behaviour in a data-driven manner, with limited expert insights and user-specified 
rules – often required with other types of intrusion detection systems. This makes 
them – in particular, semi-supervised and unsupervised methods – more resilient 
to previously unseen attack vectors such as those based on zero-day vulnerabilities.

In this light, the purpose of this report is to inform wider industry about this type 
of technology and provide them with a set of principles based on which they can 
make decisions regarding its adoption. The reader is furnished with knowledge 
regarding the types of anomaly-based IDS and their principles of operation, some 
commonly used algorithms, the process acquiring and preparing data to train 
these algorithms, the methods/metrics which can be used to evaluate their 
performance and suitability, the tools to augment their usability, and finally, the 
deployment lifecycle and post-deployment aspects such as maintainability. It is 
important to highlight that anomaly-based IDS are not a silver bullet for all 
scenarios; however, they are a viable option which, when tuned/adapted well, 
can provide tremendous value and contribute towards increased situational 
awareness for security analysts and/or a security operations centre. After all, a 
cyber defence tool must be able to integrate into a larger socio-technical 
operational environment.
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APX Appendices
A. Project Details

This document was created as part of a PETRAS project being carried out by 
University College London and its User Partners. Further details are provided 
below:

Project title (with acronym): Early Anomaly Detection for Securing IoT in 
Industrial Automation (ELLIOTT)
Type of PETRAS project: SRF1
Project Start Date: 01/02/2020
Project End Date: 31/01/2023
Research Organisation(s): Department of Computer Science, University College 
London
Funded staff: PI (Prof. Stephen Hailes), Co-I (Dr Nilufer Tuptuk), RA (Shreevanth 
Gopalakrishnan). 
User Partners: Cube Controls, Rockwell Automation. 

B. Purdue Reference Architecture

The Purdue reference model, which was adopted from the Purdue Enterprise 
Reference Architecture (PERA) model by ISA-99 [4], is a well-established concept 
model of network segmentation which also ties together these different 
components comprising an ICS architecture. As shown in Figure A-1, the PERA 
model hierarchically orders an ICS environment into six logically separate layers. 
Within each, it defines the broad ICS functionality required. The layers are as 
follows:

Enterprise Zone (IT side):

Level 5: Enterprise Network: Where the business systems such as Enterprise 
Resource Planning (ERP) and SAP which span multiple facilities sit.
Level 4: Site Business Planning and Logistics Network: Home to all IT systems 
that support the production process in a plant or facility. 

Industrial Demilitarised Zone: Separates and allows a secure connection 
between two distinct networks (IT and OT sides). 
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“Manufacturing” Zone (OT side):

Level 3: Site Operations: Contains systems that support plant-wide control, 
monitoring and data aggregation functions.
Level 2: Area Supervisory Control: Similar functions and systems as in Level 3, 
but targeted towards a smaller subset or area of the overall system. 
Level 1: Basic Control: Contains all the controlling equipment. E.g., devices to 
open valves, move actuators, start motors, etc.
Level 0: Process: Home to the actual process equipment being controlled 
and monitored from higher levels, hence, it is also called Equipment Under 
Control (EUC). 

Figure A-1: ICS Architecture based on the PERA model. Adapted from [22].
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C. Differences between IT and OT systems

In comparison to pure IT systems, ICS systems are considerably different and 
therefore have different set of security requirements which would apply to them 
[85]. Refer to Figure A-2 for a depiction.

1. System must operate uninterrupted without even needing to stop for 
security patches. Hence, unexpected outages of the sub-systems that monitor 
and control the processes are unacceptable. The ICS operates in a repeatable 
and predictive manner, and its components require deterministic responses 
with minimal levels of jitter and delay. 

2. The Confidentiality, Integrity, Availability (CIA) security model is instead 
perceived as AIC for OT systems in the order of importance. For example, 
it might be desired to ensure the integrity of sensed data, however, the 
confidentiality of data might not be a major concern. 

3. In ICS, the primary focus is on safeguarding the physical assets (e.g., PLCs, 
sensors, actuators), the environment, and the human operators involved. 
On the other hand, in an IT system, the focus could be on the data itself and IT 
assets through which the data is moved. Simultaneously, companies will look 
to maintain their reputation which takes longer to build than any plant.

4. This implies that a successful attack on an ICS could have a severer impact 
than on an IT system since damage to physical assets could result in service 
disruption, damage to the environment and may even impact human life. 

5. An ICS packet’s payload is shorter than an IT packet. Further, data captured 
at different places on site tend to be highly correlated. They all need to obey 
the laws of physics and the system design specifications. 

6. An ICS operates in a significantly resource-constrained environment and 
the usage of third-party applications (i.e., deployment of software) is restricted. 

7. Communications protocols are unique in comparison and in some cases they 
are proprietary. However, due to the time-constrained nature of operations, 
these protocols have historically been decided to operate without encryption. 
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Figure A-2: Summarises some of the key differences and novel challenges when moving 
from IT to OT. Adapted from [102].

D. Security Issues and Challenges of ICS

D. i) Insecure-by-Design

Building on some of the points highlighted in the previous section, it can also be 
added that security is not a priority in legacy ICS infrastructure by design [84]. 
For example, there are many instances where processes are run with escalated 
privileges in “always on” mode on devices, and these devices are accessible to 
many users; devices and applications are designed for long lifetimes and high 
availability, and not necessarily to be robust to modern cyber threats; many 
OT environments have backdoors to enable remote support through insecure 
protocols such as TeamViewer, FTP, VNC, etc. Old-fashioned reliance on air-
gapped OT networks will not be suitable in this new era. Table A-1 presents some 
of the key vulnerabilities in each layer of the Purdue reference model discussed 
previously.
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Component Vulnerabilities/Risks
PLC Risk of code corruption or modification, and configuration 

manipulation
HMI Difficulty of patching operating system
Sensors/Actuators Hard to guarantee integrity and authenticity of data sent 

to PLC/controllers
Safety System (SIS) Monitored less than the plant. Same, limited cybersecurity 

protection
Historian Same vulnerabilities as common database platforms
RTU Possible authentication bypass, data manipulation, 

malformed packets etc.
Eng. Workstation Insecure remote access, software vulnerabilities, USB 

insertions, etc.
Table A-1: List of some well-known vulnerabilities of each layer of the Purdue model. 

Adopted from [84].

D. ii) IT-OT Convergence

Industry 4.0 has led to the gradual convergence of IT and OT networks to. Due 
to technological advances in the IT domain (e.g., Internet of Things (IoT)) and 
increasingly ubiquitous communications technologies (e.g., Internet Protocol (IP), 
Ethernet, etc.), several avenues opened for reducing operating cost, simplifying 
maintenance procedures, and increasing visibility in the OT world. Evidently, this 
required bringing across technologies from IT to OT.

Some examples of this include [102]: 

1. Protocol migration from serial to IP: e.g., DNP3 which was designed for remote 
communication in utilities. 

2. Deterministic time division multiplexing networks (TDM) to non-deterministic 
statistical time division multiplexed networks (SDMs): Particularly with 
reference to the Physical layer – Ethernet, used for IP communications, is an 
example of SDMs.

3. Mobile Computing within ICS: for granting engineers and maintenance 
personnel with easier access to system information and control function.

4. Cloud and Fog Computing: For central (cloud) and/or distributed optimisation 
and analytics.

5. Internet of Things (IoT): It is an extension of the Internet, i.e., a global network 
of “things”/objects connected to the physical world exchanging information. 
IIoT is a subset of this, referring to the use of IoT for the industrial sector. They 
provide capabilities such as acquisition of data, controlling operations, and 
edge computing and optimisation. 
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However, IIoT and being internet connected present significant new attack 
vectors. In some cases, they can be a publicly accessible back-door to critical ICS 
networks. A simple search in the Shodan search engine for a communications 
adapter produces the following results as in Figure 7. Internet-connected Ethernet/
IP devices would have an open TCP or UDP port 44818. The results indicate that, 
with little effort, an outsider could conduct reconnaissance about an ICS plant, 
and maybe even manipulate some of the devices.

These devices, applications, and related cloud functionalities are often deployed 
as an end-to-end third-party solution. The take-away message is that while these 
solutions can be useful and convenient, they should be adopted with caution if 
they are to work alongside reliability and/or safety-critical ICS networks.
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